The Complexity of Computing the Tutte Polynomial on Transversal Matroids
نویسندگان
چکیده
The complexity of computing the Tutte polynomial T(~/c,x,y) is determined for transversal matroid ,4s and algebraic numbers x and y. It is shown that for fixed x and y the problem of computing T(~,x,y) for JA a transversal matroid is ~pP-complete unless the numbers x and y satisfy (x 1)(y 1) = 1, in which case it is polynomial-time computable. In particular, the problem of counting bases in a transversal matroid, and of counting various types of "matchable" sets of nodes in a bipartite graph, is #P-complete.
منابع مشابه
On the Complexity of Computing the Tutte Polynomial of Bicircular Matroids
We show that evaluating the Tutte polynomial for the class of bicircular matroids is #Phard at every point (x, y) except those in the hyperbola (x − 1)(y − 1) = 1 and possibly those on the lines x = 0 and x = −1. Since bicircular matroids form a rather restricted subclass of transversal matroids, our results can be seen as a partial strengthening of a result by Colbourn, Provan and Vertigan, na...
متن کاملar X iv : m at h / 04 10 42 5 v 1 [ m at h . C O ] 1 9 O ct 2 00 4 MULTI - PATH MATROIDS
We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...
متن کاملar X iv : m at h . C O / 0 41 04 25 v 1 1 9 O ct 2 00 4 MULTI - PATH MATROIDS
We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...
متن کاملAn Introduction to Transversal Matroids
1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....
متن کاملLattice path matroids: enumerative aspects and Tutte polynomials
Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 15 شماره
صفحات -
تاریخ انتشار 1995